edexcel

Mark Scheme (Results)
October 2016

Pearson Edexcel International GCE in Chemistry (WCHO1) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2016
Publications Code WCH01_01_1610_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme
Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$1($ a)	C		1
	Incorrect Answers: A - This is 80\% of the starting material and not the product B - Same mass as the starting material \& not the product D- This is 100\% yield and not 80\%		

Question Number	Correct Answer	Reject	Mark
1(b)	C		1
	Incorrect Answers: A - This is only for one mole not three B - This is for two moles not three D- This is for five moles not three		

Question Number	Correct Answer	Reject	Mark
$1(\mathrm{c})$	C		1
	Incorrect Answers: A - This is for one water molecule not six B - This is the Mr value of water just as a percentage D- This is the percentage of the salt which is not water		

Question Number	Correct Answer	Reject	Mark
2(a)	A		1
	Incorrect Answers: B- Ten times too big C -100 times too big D- Thousand times too big		

Question Number	Correct Answer	Reject	Mark
2(b)	B		1
	Incorrect Answers: A - Incorrect M_{r} and ratio used C - The $2: 1$ ratio has not been used D- The $2: 1$ ratio has been used the wrong way round		

Question Number	Correct Answer	Reject	Mark
2(c)	A		1
	Incorrect Answers: B - There are no coloured compounds C - There is no white precipitate D- There are no coloured precipitates		

Question Number	Correct Answer	Reject	Mark
3(a)	A		1
	Incorrect Answers: B - Two groups attached to one of the carbons in the double bond are the same C - Two groups attached to one of the carbons in the double bond are the same D- Two groups attached to one of the carbons in the double bond are the same		

Question Number	Correct Answer	Reject	Mark
3(b)	D		1
	Incorrect Answers: A - The major product is 3- bromohexane B - The major product is 3-bromo-3- methylpentane C- The major product is 2-bromo-2- methylpentane		

Question Number	Correct Answer	Reject	Mark
3(c)	B		1
	Incorrect Answers: A - There are 12 hydrogen atoms C - There are 12 hydrogen atoms D- There are 12 hydrogen atoms		

Question Number	Correct Answer	Reject	Mark
4	A		1
	Incorrect Answers: B - The methyl groups are bonded to the same carbon C - The double bonds are still present D- The double bond has moved and results in pentavalent carbons		

Question Number	Correct Answer	Reject	Mark
5	C		1
	Incorrect Answers: A - The longest consecutive chain is 7 not 5		
B - The longest consecutive chain is 7 not 5 D- The numbering of the longest chain is wrong			

Question Number	Correct Answer	Reject	Mark
6	D		1
	Incorrect Answers: A - There is no dative covalent bond B - There is no dative covalent bond C- There is no dative covalent bond		

Question Number	Correct Answer	Reject	Mark
7	C		1
	Incorrect Answers: A - Melting temperatures increase across the period with a peak at group IV not Group I B - Melting temperatures increase across the period with a peak at group IV not Group III D- Melting temperatures increase across the period with a peak at group IV not Group V		

Question Number	Correct Answer	Reject	Mark
8	A		1
	Incorrect Answers: B-Hydrogen ions do not go to the anode C-Sodium would not be formed in water D- Oxygen ions do not go to the cathode		

Question Number	Correct Answer	Reject	Mark
$9(\mathrm{a})$	D		1
	Incorrect Answers: A - Atom economy of ethene, not all alkenes B - Ethene not doubled in numerator but doubled in denominator C-Atom economy where ethene not doubled		

Question Number	Correct Answer	Reject	Mark
$9(b)$	B		1
	Incorrect Answers: A - Incorrect reason for use of cracking C - Incorrect reason for use of cracking D- Incorrect reason for use of cracking		

Question Number	Correct Answer	Reject	Mark
10	C		1
	Incorrect Answers: A - Carbon dioxide does cause global warming B - Carbon dioxide does cause ice caps to melt D- Carbon dioxide does cause sea levels to rise		

Question Number	Correct Answer	Reject	Mark
11	D		1
	Incorrect Answers: A - Electron configuration lacks energy Ievel 3 electrons B - Electron configuration has an extra 18 electrons C- Electron configuration lacks energy level 3 electrons		

Question Number	Correct Answer	Reject	Mark
12	B		1
	Incorrect Answers: A - The change is not to the extrapolated peak C - The change starts at zero and not 20 and goes to only the observed peak D- The change starts at zero and not 20		

Question Number	Correct Answer	Reject	Mark
13	A		1
	Incorrect Answers: B - The enthalpy changes are added and not subtracted C - The enthalpy changes are incorrectly doubled D- The enthalpy changes are doubled and added both incorrectly		

(TOTAL FOR SECTION A = 20 MARKS)

Section B

Question Number	Acceptable Answers	Reject	Mark
$14(\mathrm{a})(\mathrm{i})$	$($ RAM $=(13.9 \times 10)+(86.1 \times 11))=10.861$ (1) $=10.9$ IGNORE amu $/ \mathrm{g} \mathrm{mol}^{-1}$ (1) Correct answer without working scores (2)g/\% answers not to 3sf		

Question Number	Acceptable Answers	Reject	Mark
$14(\mathrm{a})$ (ii)	compared to one twelfth the mass of a carbon-12 (atom/isotope) ALLOW where (one atom of) carbon-12 has a mass of exactly 12		1

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :--- | :---: |
| $14(\mathrm{a})$ (iii) | 5 protons and 5 electrons (1) | | |
| | 7 neutrons | | |
| | ALLOW use of letters p, e and n for sub-
 atomic particles | | 2 |

Question Number	Acceptable Answers	Reject	Mark
$14(\mathrm{~b})(\mathrm{i})$	Any one from - deflect the ions from their normal path - additional/false peaks from particles in the air ions would collide with particles in the air	Air molecules	1
	IGNORE Reference to chemical reactions/anomalous results/decreased speed of ions/ wrong percentage abundance given		

Question Number	Acceptable Answers	Reject	Mark
$14(\mathrm{~b})$ (ii)	No effect / unaffected / they would not be accelerated/Only affects charged particles IGNORE Reference to detection/deflection/magnetic field	1	

Question Number	Acceptable Answers	Reject	Mark
14 (b)(iii)	Any one correct statement scores (1) Three correct statements scores (2) both oxygen atoms from the manganate(VII) ion gives a (molecular / parent ion) peak at 66 one oxygen atom from the manganate(VII) ion lone from water gives a (molecular / parent ion) peak at 64	Reference to peaks at $32,34,36$ or 63 or 65	2
	both oxygen atoms from the water gives a (molecular / parent ion) peak at 62	IGNORE ${ }^{18}$ O peak ALLOW Both oxygen atoms from the magnagate(VII) ion gives a (molecular/parent ion) peak four more	

Question Number	Acceptable Answers	Reject	Mark
14 (c)(i)	(Error 1) peaks at 35 and 37 should be in $3: 1$ ratio/the peak at 35 should be three times the height of the peak at 37 ALLOW Reference to the height of the peak at 35 being at 75% compared to the height of the peak at 37 being at 25%	Just 'greater'	2
(1) (Error 2) there should be a peak at 72 IGNORE Reference to the height/intensity of the peak at $72(1)$			

Question Number	Acceptable Answers	Reject	Mark
14(c)(ii)	$\begin{aligned} & \left({ }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}\right)^{+} \\ & \mathrm{OR} \\ & \left.{ }^{[37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}\right]^{+} \\ & \mathrm{OR} \\ & \left({ }^{37} \mathrm{Cl} \mathrm{Cl}^{37}\right)^{+} \\ & \mathrm{OR} \\ & { }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}^{+} \\ & \mathrm{OR} \\ & { }^{37} \mathrm{Cl}_{2}{ }^{+} \end{aligned}$	$\left({ }^{37} \mathrm{Cl}+{ }^{37} \mathrm{Cl}\right)^{+}$ $2{ }^{37} \mathrm{Cl}^{+}$	1

(Total for Question 14 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
$15(\mathrm{a})$	$\mathrm{CH}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr}$ IGNORE State symbols even if incorrect Reference to uv light	$\mathrm{C}_{2} \mathrm{H}_{6}$	1

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline 15(\mathrm{~b}) & \begin{array}{l}\text { The names must correspond to the formulae but } \\
\text { there is no TE on incorrect formulae }\end{array}
$$ \& \& 4

\begin{array}{l}Name: 1-chloropropane

(1)\end{array} \& (1)\end{array}\right]\)| (1) |
| :--- |

Question Number	Acceptable Answers	Reject	Mark
$15(\mathrm{c})(\mathrm{i})$	(Ethane) has no electron-rich area/no electron-dense area/ has no delta negative centre/no $\delta-$ (for the electrophile to react with)	Charge density/ No lone pair	1
	IGNORE No double bonds / no Π bonds but this can be credited in (c)(ii) Has maximum number of hydrogen atoms	(

Question Number	Acceptable Answers	Reject	Mark
15 (c)(ii)	(Ethane) has no multiple bonds/ has no double bond / has no n bond / has only single / has only σ bonds ALLOW Ethane is saturated NOTE This may be explained in the answer to (c)(i) IGNORE Ethemistry, e.g. donates protons	1	

Question Number	Acceptable Answers	Reject	Mark
$15(\mathrm{c})(\mathrm{iii})$	(Equation) $\quad \mathrm{Cl}_{2} \rightarrow$ 2Cl• IGNORE curly arrows even if incorrect (Name of reaction step) Initiation IGNORE Free radical substitution/Homolytic fission Mark independently		2
	(1)		

Question Number	Acceptable Answers	Reject	Mark
15(c)(iv)	Carbon with only two hydrogens has single electron (1) Dot and cross of $\mathrm{C}-\mathrm{C}$ and all $\mathrm{C}-\mathrm{H}$ bonds correct (1) ALLOW One mark for ethane dot and cross diagram One mark for methyl free radical, example $H^{x_{0}} \cdot C_{x_{0}}^{x_{0}}$ it	Missing H's	2

Question Number	Acceptable Answers	Reject	Mark
$15(\mathrm{c})(\mathrm{v})$	Increase the proportion of chlorine/ Use excess / more chlorine ALLOW decrease proportion of ethane OR Use less ethane Ignore references to temperature, pressure and uv light	Chloride Cl	1

(Total for Question $15=12$ marks)

Question Number	Acceptable Answers	Reject	Mark
$16($ a)	The energy required ALLOW energy / enthalpy change/endothermic (1)	Energy given out / energy produced/ exothermic	3
	to remove one electron from each atom in one mole of atoms ALLOW to remove one mole of electrons from one mole of atoms Or to produce one mole of singly charged positive ions from one mole of atoms (1) (all species) in the gaseous state (1)		

Question Number	Acceptable Answers	Reject	Mark
16(b)	$\mathrm{Li}^{+}(\mathrm{g}) \rightarrow \quad \mathrm{Li}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$ OR $\mathrm{Li}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \quad \mathrm{Li}^{2+}(\mathrm{g})$ IGNORE missing (g) if gaseous is in part (a) DO NOT penalise missing gaseous state symbol if omission of gaseous is already penalised in part (a)		1

Question Number	Acceptable Answers	Reject	Mark
$16(\mathrm{c})$	Helium only has two electrons/ Helium does not have a third electron to lose IGNORE Helium only has two valence electrons/ only has two electrons in its outer shell	1	

Question Number	Acceptable Answers	Reject	Mark
16(d)	Marking point 1 One cross for electron 1 significantly below those already present (1) Marking point 2 One cross for electron 2 slightly below the three crosses already present (1) Marking point 3 Crosses for electrons 6 to 9 on an approximately straight line upwards continuing from electrons 3 to 5 (1) Marking point 4 Cross for electron 10 significantly above the cross for electron 9 and cross for electron 11 slightly above the cross for electron 10 (1) Mark Independently IGNORE Lines drawn between crosses	'big' increase anywhere between crosses 6 to 9 'big' increase from cross 10 to cross 11	4

Question Number	Acceptable Answers	Reject	Mark
$16(\mathrm{e})$	Any three from	Reference to molecule, max 2	3
/ncreased shielding (by inner electron shells)			
electrons (1)			
More shells			
(1)			
Greater distance from nucleus (to outermost electron) / increased (atomic) radius (1) These outweigh the increased nuclear attraction from the greater number of protons (1)	Ionic radius		

Question Number	Acceptable Answers	Reject	Mark
$16(\mathrm{f})$	(For sulfur) the outermost electron is paired in the p orbital (1)	4 p	2
	Repulsion between (paired) electrons (reduces ionisation energy) (1)	If no correct reference to sulfur then allow one mark for phosphorus (atom) having more stable p^{3} /half-filled p sub-shell	

Question Number	Acceptable Answers	Reject	Mark
$16(\mathrm{~g})$	(Ionisation energy value) Any value in the range of (+)520-700 (kJ mol 1) [Actual value (+)578] ALLOW Any range within the values given above (1)	Higher The outermost electron for aluminium is in a p orbital / subshell (1) energy level/ shell	$2 p$
Which has higher energy (than the s orbital)	ALLOW is further away from the nucleus (and requires less energy to remove) than the 3s electrons (of aluminium) Or Shielded by the 3s electrons (1) ACCEPT Reverse arguments		

(Total for Question 16 = 17 marks)

Question Number	Acceptable Answers	Reject	Mark
17(a)	Diagram similar to:		3
	Marking point 1 Arrow upwards for first ionisation energy of sodium and correct label on arrow (from correct entities) (1) Marking point 2 Arrow downwards for electron affinity of iodine and correct label on arrow (from correct entities) (1) Marking point 3 Correct entities with states (on horizontal line) Ignore missing electron (1) ALLOW Numerical values for labels on arrows Recognisable symbols for labels on arrows, such as $\Delta H_{\text {IE }}, \Delta H_{\text {EA }}$		

Question Number	Acceptable Answers	Reject	Mark
$17(\mathrm{~b})$	$(\mathrm{LE}=107+107+496+288-295=)-703 \mathrm{~kJ} \mathrm{~mol}^{-1}$		1

Question Number	Acceptable Answers	Reject	Mark
17 (c)	Energy is required to break bonds (1)	In sodium these are metallic bonds/(electrostatic) attractions between metallic cations and the sea of delocalised electrons (1)	In iodine these are covalent bonds (between the iodine atoms and London forces) (1) Mark independently

Question Number	Acceptable Answers	Reject	Mark
17 (d)(i)	(Sodium iodide has) some covalent character / some covalency/some polarisation ALLOW the electron cloud of the iodide ion is distorted Ignore references to NaI being not 100\% ionic/ NaI being just 'covalent' (1) which results in stronger bonding (than purely ionic) (1) Ignore References to standard conditions/expt. error	2	

Question Number	Acceptable Answers	Reject	Mark
17 (d)(ii)	Diagram with distorted electron density cloud towards the sodium ion	Iodine contour line overlaps with sodium contour line	1
	Example		

Question Number	Acceptable Answers	Reject	Mark
$18(\mathrm{a})(\mathrm{i})$			
		+	$+\mathrm{H}_{2}$

Question Number	Acceptable Answers	Reject	Mark
$18(\mathrm{a})(\mathrm{ii})$	From red-brown / red / brown to colourless	Clear/white Orange/yellow/ Orange-brown	1

Question Number	Acceptable Answers	Reject	Mark
18(b)(i)	(Bonds broken $=$) $612+193=(+) 805$ (Bonds made=) $347+(290 \times 2)=(-) 927$ (1) Enthalpy of reaction $=(805-927=)-122(\mathrm{~kJ}$ mol^{-1}) Correct answer with no working scores two marks ALLOW (All bonds broken=)+4803 (All bonds made $=$)-4925 (1) Enthalpy of reaction $=(+4803-4925=)-122(\mathrm{~kJ}$ mol^{-1}) (1) Award one mark for (+) $122\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Award one mark for a correct subtraction using one of the correct values above, example $4538-4925=-387\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		2

Question Number	Acceptable Answers	Reject	Mark
$18(\mathrm{~b})$ (ii)	Bond enthalpies are for gaseous compounds and bromine is a liquid / 1,2 dibromobutane is a liquid	 IGNORE Reference to just 'different states'	

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $18(\mathrm{~b})(\mathrm{iii})$ | Mechanism drawn similar to | 3 | |
| | Marking point 1
 Curly arrow from double bond to Br and curly
 arrow from Br - Br bond to the Br (dipoles not
 required) (1)
 Marking point 2
 Correct carbocation structure
 (1)
 Marking point 3
 Curly arrow from anywhere on the bromide ion
 (including the minus sign) towards the
 carbocation and the correct product
 ALLOW TE on primary carbocation
 (1) | Incorrect | |
| dipole | | | |

Question Number	Acceptable Answers	Reject	Mark
18(b) (iv)	1-bromobutan-2-ol / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{Br} /$ ALLOW 2-bromobutan-1-ol / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{OH} /$ ALLOW 2-bromo-1-butanol ALLOW skeletal or structural formulae Penalise contradictory names/formulae	Missing H's	1
TOTAL FOR QUESTION 18 = 9 MARKS (TOTAL FOR SECTION B = 60 MARKS)			

